

Optoplex Corporation

January 2022

Table of Contents

#	Product	Page
1	DPSK Optical Phase Demodulators	 3
2	DQPSK Optical Phase Demodulators	 6
3	90deg Optical Hybrid	 8
4	180deg Optical Hybrid	 9
5	2x4 Coherent Mixer (Polarization Diversified 90deg Optical Hybrid) for Single-End Detection)	 10
6	2x8 DP-QPSK Coherent Mixer (Polarization Diversified 90deg Optical Hybrid) for Balanced Detection)	 11
7	90deg Hybrid integrated with Balanced Receivers	 12
8	2x8 Coherent Mixer integrated with Balanced Receivers	 13
9	Balanced Receivers	 14
10	Applications of Coherent Detection	 15
11	Optical Interleavers	 16
12	Optical Etalons	 19
13	Flat-Top Optical Comb Filters	 22
14	Wavelength Lockers	 24
15	Tunable Optical Filters (TOF) – Based on Thin Film Filter with Angle-Tuning	 25
16	Tunable Optical Filters (TOF) – Based on MEMS/Grating	 26
17	Mini Tunable Optical Filters (Mini TOF) – Based on MEMS/Grating	 27
18	Tunable Etalon Filters	 27
19	Optical Channel Monitor (OCM)/Optical Performance Monitor (OPM)	 28
20	Optical Spectrum Analyzers	 29
21	Tunable Laser (iTLA)	 30
22	10G Tunable-ROSA	 31
23	High-Speed High-Power Photodetectors (20GHz)	 32

DPSK Phase Demodulator

Optoplex's **Optical DPSK Demodulator**, also known as **Delay Line Interferometer** (DLI), converts *phase modulation* to *amplitude modulation* over the entire C+L band in support of data transmission rates of 2.5, 10 or 40 Gb/s. The DPSK demodulator is designed for phase modulated optical communication systems utilized in commercial, defense and space exploration markets. The device plays a key role in improving signal quality and performance to meet the expanding demand for higher data rates and more complex transmission formats within current and next generation systems without major capital expenditure. Optoplex's DPSK Demodulator is based on a patented free-space optical design, which is compact, athermal and polarization-independent. The measured frequency drift over temperature is only ~0.02 GHz/°C for our standard passive device. Further, this DPSK Demodulator exhibits a total polarization-dependent phase shift of less than 2 degrees over the entire operating temperature range with a high extinction ratio. Optoplex's DPSK Demodulators can be configured to be fully tunable, colorless tunable or purely passive. Dual-Rate DPSK Demodulator is also available.

Since its release of the DPSK products in 2006, Optoplex has been the dominant supplier of DPSK DLIs in the global market for optical communications for terrestrial, subsea and aerospace applications.

	Table 1, DPSK Performance Specifications		Table 2, Wav	Table 2, Wavelength Bands		Table 3, Available FSRs		
	Parameter	Unit	Specification	Wavelength Band	Wavelength Range (nm)	Data Rate (Gb/s)	Typical FSR (GHz)	
	Wavelength Range ¹	nm	See Table 2	C-Band	1525 ~ 1570	40	66.67, 57, 50	
	Free Spectral Range (FSR) ²	GHz	See Table 3	L-Band	1570 ~ 1610	20	21.5, 21.9	
	FSR Error ³	%	< 1	C+L Band	1525 ~ 1610	10	12.5, 12.25, 11.4, 10.7, 10	
	Insertion Loss (including two connectors)	dB	1.8	O-Band-1	1250 ~ 1310	5	5	
	Extinction Ratio	dB	> 18		1250 1510	3	3 33	
	PMD	ps	< 0.1	O-Band-2	1310 ~ 1370		5.55	
	Return Loss	dB	> 40	O-Band	1260 ~ 1360	2.5	2.88, 2.67, 2.50, 2.488	
	PDL	dB	< 0.2	1064	1064 +/-5	1	1.25, 1.0	
	PDFS	deg	< 3					
	TDFS ⁴	MHz/C	< 20		\bigcirc	1-Bit Delay		
	Optical Path Delay (between the two receiving ports)	ps	<1.0				Output-1	
	Tuning Time Constant ⁵	sec	< 1.0	Input		\sim	/ 	
	Tuning Range ⁶	FSR	1.5 ~ 3			\rightarrow		
	Tuning Voltage ⁶	V	0~5		\backslash			
	Power Consumption ⁶	W	0.5				Output-2	
	Maximum Input Optical Power	mW	300		Fig 1. Schematic of	DPSK DLI		
	Operating Temperature8 °C -5 ~ +70							
 Notes Wavelength bands available from C-, L-, C+L, and O-Band. Other wavelength ranges can be made upon request Listed FSRs are the standard offers. Custom FSR available upon request. Standard FSR error is 1%. More precise FSR can be made. Contact Optoplex for your requirements. TDFS are applied to PASSIVE and Semi-Tunable versions. It is not required in Tunable version. Time constant, or tuning speed, is measured at the output from 0 ~ 50% of the output amplitude. Faster tuning can be made. Contact Optoplex. For standard design with tuning range of 1.5 ~ 3 FSR at driving voltage from 0 ~ 5V and power consumption of 0.5W typically. Wider tuning range, such as 5FSR or even 10FSR (+/-5FSR) can be made at higher driving voltage (0 ~ 7V) and therefore higher power consumption. Contact Optoplex for more details about larger tuning range. By default, single mode fiber (SMF-28e or equivalent) is used. Options are bare fiber, 900um tight buffer, or 900um loose tube. B: The device dimension varies depending on the FSR. Contact Optoplex for details. 			Designs of D Tunable – the out 0 ~ 5V). The default d Semi-Tunable: T usually 0.5GHz. Passive – There is I manufacturing, we w aligned to ITU grids. T	PSK but spectrum of the DPSK lesign has a tuning range he output spectrum of th no tuner built-in the DPSk ill align the spectral peak rhis is good when the DPS	can be tuned (shifted) v of >1.5 FSR. e DPSK can be slightly tu device. The spectrum c to customer specific free K is used in colorless DW	vhen a driving voltage is applied (VDC: ned (shifted). The max range is an not be tuned (shifted). In uency position. By default, it will be vDM system.		
			Applications • 2.5, 10, 20 o signal recept • Customized applica • Data rate op • Extend trans	r 40 Gb/s commercial DP ion data rate for advanced ations timization mission distance	 Free-space la Satellite optic Quantum Cry Doppler Lidar Precise optica Optical spectra 	aser communication al communication ptographic Application al measurement roscopy		
	 Key Features and Benefi Athermal design C+L band coverage by a s Low temperature-depend Low polarization-depend Low insertion loss & PDL High power handling Passive, colorless tunable Telcordia GR-1221 qualifi 	ts single device dent freque lent frequer e (both aligr ied	e ncy shift (TDFS) icy shift (PDFS) ned to ITU Grid) or fully tunable	Fig 1. Standard	d package design		Orientaria Tanungaria Tanungaria	

Special DPSK and Applications

Military and Aerospace-Grade DPSK DLIs

Optoplex has developed manufacturing process compliant with MIL- and AS- standards and the 2.5Gbps DPSK DLIs have been qualified for aerospace (including GEO satellite) applications).

Contact Optoplex for details.

Popular Product Part Numbers

. Six Fild					
FSR	MPN	Product Description	FSR	MPN	Product Description
1.25 ¹⁾	DI-CDEFAC523	DPSK, C-Band, 1.25GHz FSR, Tunable, SMF, FC/APC	26.75	DI-T0EFCS005	DPSK, C+L Band, 26.75GHz FSR, Tunable, SMF, FC/UPC
2.488	DI-CCEFCC457	DPSK, C-band, 2.488G FSR, Tunable, SMF, FC/UPC		DI-CODFAC001	DPSK, C-Band, 27.75GHz FSR, Tunable, SMF, FC/APC
2.5	DI-CCEFCC520	DPSK, C-Band, 2.5GHz FSR, Tunable, SMF, FC/APC	27.75	DI-COESCS007	DPSK, C-Band, 27.5GHz FSR, Tunable, SMF, SC/UPC
2.67	DI-CCEFCC485	DPSK, C-band, 2.67G FSR, Tunable, SMF, FC/APC		DI-CODFAC001	DPSK, C-Band, 27.75GHz FSR, Semi-tunable, PM Fiber, FC/APC
	DI-CCEFCC415	DPSK, C-Band, 2.88GHz FSR, 4-port, SMF, FC/UPC	29	DI-COEFAC464	DPSK, C-band, 28GHz FSR, Tunable, FC/APC
2.88	DI-CCEFAC437	DPSK, C-Band, 2.88GHz FSR, Tunable, SMF, FC/APC.	20	DI-COELCS009	DPSK, L-Band, 28GHz FSR, Tunable, SMF, LC/UPC
2.00	DI-CCEFCC461	DPSK, C-band, 2.88G FSR, Push-Pull Tuning for +/-5 FSR, SMF, FC/UPC	31.75	DI-COESCS008	DPSK, C-Band, 31.75GHz FSR, Tunable, SMF, SC/UPC
	DI-CCEFAC463	DPSK, C-band, 2.88G FSR, Tuning range >=4.2 FSR, SMF, FC/APC	32.5	DI-COEFCS006	DPSK, C-Band, 32.5GHz FSR, Tunable, SMF, FC/UPC
3.33	DI-CCEFAC519	DPSK, C-Band, 3.33GHz FSR, Tunable, SMF, FC/APC	33.33	DI-COELCS495	DPSK, C-Band, 33.33GHz FSR, Tunable, SMF, LC/UPC
5	DI-LBESCS002	DPSK, L-Band, 5GHz FSR, Tunable, SMF, SC/UPC		DI-C1CFCS002	DPSK, C-Band, 40GHz FSR, Tunable, SMF, FC/UPC
J	DI-CBEFAC451	DPSK, C-Band, 5GHz FSR, Tunable, SMF, FC/APC		DI-C1CSCS002	DPSK, C-Band, 40GHz FSR, Tunable, SMF, SC/UPC
5.76	DI-CCEFCC420	DPSK, C-Band, FSR 5.76G, Tunable, 4-port, SMF, FC/UPC	40	DI-L1ESCS003	DPSK, L-Band, 40GHz FSR, Tunable, SMF, SC/UPC
6.25	DI-CBEFCS001	DPSK, C-band, 6.25GHz FSR, Tunable, SMF, FC/UPC		DI-T1EFCC421	DPSK, C+L Band, 40GHz FSR, Tunable, SMF, FSC/UPC
7.83	DI-CAELCC359	DPSK, C-Band, 7.83GHz FSR, Tunable, SMF, LC/UPC		DI-A1EFAP521	DPSK, 1064nm, 40GHz FSR, Tunable, PMF (PM780-HP), FC/APC
8.125	DI-CAESCS001	DPSK, C-Band, 8.125GHz FSR, Tunable, SMF, SC/UPC	40.96	DI-C1EFCS006	DPSK. C-Band, 40.96GHz FSR, Tunable, SMF, FC/UPC
	DI-CAELCC426	DPSK, C-Band, 10GHz FSR, Tunable, SMF, LC/UPC		DI-C1FECS003	DPSK C-Band 43GHz FSR Tunable SME EC/UPC
	DI-CADLCC427	DPSK, C-Band, 10GHz FSR, Semi-Tunable, SMF, LC/UPC	42		DRSK C-Band 42GHz ESP. Tunable SME LC/UPC
	DI-CACLCC428	DPSK, C-Band, 10GHz FSR, Passive, SMF, LC/UPC	43		DPSK, C-Ballu, 45GHZ FSK, Tullable, SWF, LC/UPC
10	DI-TAEFAC465	DPSK, C+L Bband, 10GHz FSR, Tunable, FC/APC	11.1	DI-TIEFC3003	
	DI-QAEFAC501	DPSK, O-Band, 10GHz FSR, Tunable, SMF, FC/APC	44.4	DI-CIEFCS004	DPSK, C-Band, 44.4GHZ FSK, Tunable, SMF, FC/OPC
	DI-CAEFAS522	DPSK, C-Band, 10GHz FSR, Tunable, SMF, FC/APC		DI-TIESCS001	DPSK, C+L Band, SUGHZ FSK, TUNADIE, SMF, SC/UPC
	DI-CAEFCS006	DPSK, C-Band, 10.24GHz FSR, Tunable, SMF, FC/UPC	50	DI-C1MLCS503	DPSK, C-Band, 50GHz FSR, Tunable, SMF, LC/UPC
10.24	DI-CADFCC448	DPSK, C-Band, 10.24GHz FSR, Semi-Tunable, SMF, FC/UPC		DI-C1EFAS506	DPSK, C-Band, 50GHz FSR, Tunable, SMF, FC/APC
	DI-CAEFAC435	DPSK, C-band, 10.7GHz FSR, Tunable, SMF, FC/APC		DI-A1EFAS517	DPSK, 1064nm, 50GHz FSR, Tunable, PMF (PM780-HP), FC/APC
10.7	DI-CAELCC438	DPSK, C-band, 10.7GHz FSR, Tunable, SMF, LC/UPC	53.5	DI-T1EFCS007	DPSK, C+L Band, 53.5GHz FSR, Tunable, SMF, FC/UPC
	DI-TAMSCS525	DPSK, C+L Band, 10.7GHz FSR, Tunable, SMF, SC/UPC		DI-C1MFCS007	DPSK, C-Band, 53.5GHz FSR, Tunable, SMF, FC/UPC
11.3	DI-CAELCM509	DPSK, C-Band, 11.3GHz FSR, Tunable, SMF. LC/UPC	55	DI-C1EFCS021	DPSK, C-Band, 55GHz FSR, Tunable, SMF, FC/UPC
	DI-CAEFAS505	DPSK, C-Band, 12.25GHz FSR, Tunable, SMF, FC/APC	57	DI-C1ELCS005	DPSK, C-Band, 57GHz FSR, Tunable, SMF, LC/UPC
12.25	DI-CAELCM510	DPSK, C-Band, 12.25GHz FSR, Tunable, SMF, LC/UPC		DI-C1CLCS005	DPSK, C-Band, 57.14GHz FSR, Tunable, SMF, LC/UPC
12.4	DI-CAExxC349	DPSK, C-Band, 12.4GHz FSR, Tunable, SMF, No Connector	60	DI-C1ELCS008	DPSK, C-Band, 60GHz FSR, Tunable, SMF, LC/UPC
	DI-CAEFCS425	DPSK, C-Band, 12.5GHz FSR, Tunable, SMF, FC/APC	65	DI-C1MLCC392	DPSK, C-Band, 65GHz FSR, Tunable, SMF, LC/UPC
12.5	DI-CAELCS524	DPSK. C-Band, 12.5GHz FSR. Tunable, SMF. LC/UPC		DI-C1MLCP010	DPSK, C-Band, 66.67GHz FSR, Tunable, PM Fiber, LC/UPC
13.375	DI-TAEFCS008	DPSK, C+L Band, 13.375GHz FSR, Tunable, SMF, FC/UPC	66.67	DI-L1MLCC407	DPSK, L-Band, 66.67GHz FSR, Tunable, SMF, LC/UPC
	DI-COELCC429	DPSK, C-Band, 20GHz FSR, Tunable, SMF, LC/UPC	00.07	DI-C1MLCC447	DPSK, C-Band, 66.67GHz FSR, Tunable, SMF, LC/UPC
	DI-C0DI CC430	DPSK. C-Band. 20GHz FSR. Semi-Tunable. SMF. LC/UPC		DI-A1EFAS518	DPSK, 1064nm, 67GHz FSR, Tunable, PMF (PM780-HP), FC/APC
20	DI-C0CI CC431	DPSK. C-Band. 20GHz FSR. Passive. SME. IC/UPC		DI-C2EFCS002	DPSK, C-Band, 80GHz FSR, Tunable, SMF, FC/UPC
		DPSK C.Band 20GHz ESR Tunable SME EC/APC	80	DI-C2DFCS001	DPSK, C-Band, 80GHz FSR, Semi-Tunable, SMF, FC/UPC
	DI-TOFECS003	DPSK (+L Band 21 5GHz FSR Tunable SME EC/UPC		DI-C3DLCS002	DPSK, C-Band, 100GHz FSR, Semi-Tunable, SMF, LC/UPC
21.5	DI-COELCS515	DPSK C.Band 21 5GHz FSR Tunable SME LC/LIPC	100	DI-Q2EFCC467	DPSK, O-Band, 100GHz FSR, Tunable, SMF, FC/UPC
23	DI-COEFCS001	DPSK C.Band 23GHz ESR Tunable SME EC/UPC	125	DI-C3DFCS001	DPSK, C-Band, 125GHz FSR, Semi-Tunable, SMF, LC/UPC
23		DISK, C Band, 22 75GHz ESP, Tunable, SME LC/UPC	159.25	DI-C4EFCS001	DPSK, C-Band, 159.25GHz FSR, Tunable, SMF, FC/UPC
23.75		DPSK, C-Band, 24CH2 ESR, Tunable, SME, EC/UPC	163.84	DI-C4FECS002	DPSK. C-Band, 163,84GHz FSB, Tunable, SME, EC/UPC
24	DI-CUJFCC343	DPSK, C-Band, 24GHZ FSK, Tunable, SMF, FC/OPC	500	DI-CSESCC453	DPSK C-Band 500GHz FSR Tunable SME SC/UPC
	DI-COELCOOL		Dual ESP DPS	×	
	DI-COEFCS424		12/66 67		DBSK C-Rand 42 8/66 67CHz Dual ESP Tunable SME LC/UPC
25	DI-LUELCS002	DESK, C-Band, ZEGHZ FSK, TUNADIE, SMF, LC/UPC	45/00.07		DRSK C Band SO/SECUE Duel SCO Turnelle SMF, LU/UPC
25	DI-CIEFAM512	DPSK, C-Band, 25GHZ FSR, Tunable, SMF, FC/APC	50/65	DI-CINLCC002	DPSK, C-Band, SU/65GHZ Dual-FSR, Tunable, SMF, LC/UPC
	DI-TOESCS002	DPSK, C+L Band, 25GHz FSR, Tunable, SMF, SC/UPC	50/66.67	DI-C1NLAC380	UPSK, C-Band, 50/66.7GHz Dual-FSR, Tunable, SMF, LC/APC
	DI-T0EFCC456	DPSK, C+L Band, 25GHz FSR, Tunable, FC/UPC			
	DI-QCEFAS491	DPSK, O-Band, 25GHz FSR, Tunable, FC/APC			

FSR	MPN	Product Description
26.75	DI-T0EFCS005	DPSK, C+L Band, 26.75GHz FSR, Tunable, SMF, FC/UPC
	DI-CODFAC001	DPSK, C-Band, 27.75GHz FSR, Tunable, SMF, FC/APC
27.75	DI-COESCS007	DPSK, C-Band, 27.5GHz FSR, Tunable, SMF, SC/UPC
	DI-CODFAC001	DPSK, C-Band, 27.75GHz FSR, Semi-tunable, PM Fiber, FC/APC
20	DI-COEFAC464	DPSK, C-band, 28GHz FSR, Tunable, FC/APC
20	DI-COELCS009	DPSK, L-Band, 28GHz FSR, Tunable, SMF, LC/UPC
31.75	DI-COESCS008	DPSK, C-Band, 31.75GHz FSR, Tunable, SMF, SC/UPC
32.5	DI-COEFCS006	DPSK, C-Band, 32.5GHz FSR, Tunable, SMF, FC/UPC
33.33	DI-COELCS495	DPSK, C-Band, 33.33GHz FSR, Tunable, SMF, LC/UPC
	DI-C1CFCS002	DPSK, C-Band, 40GHz FSR, Tunable, SMF, FC/UPC
	DI-C1CSCS002	DPSK, C-Band, 40GHz FSR, Tunable, SMF, SC/UPC
40	DI-L1ESCS003	DPSK, L-Band, 40GHz FSR, Tunable, SMF, SC/UPC
	DI-T1EFCC421	DPSK, C+L Band, 40GHz FSR, Tunable, SMF, FSC/UPC
	DI-A1EFAP521	DPSK, 1064nm, 40GHz FSR, Tunable, PMF (PM780-HP), FC/APC
40.96	DI-C1EFCS006	DPSK, C-Band, 40.96GHz FSR, Tunable, SMF, FC/UPC
	DI-C1EFCS003	DPSK, C-Band, 43GHz FSR, Tunable, SMF, FC/UPC
43	DI-C1ELCC003	DPSK, C-Band, 43GHz FSR, Tunable, SMF, LC/UPC
	DI-T1EFCS003	DPSK, C+L Band, 43GHz FSR, Tunable, SMF, FC/UPC
44.4	DI-C1EFCS004	DPSK, C-Band, 44.4GHz FSR, Tunable, SMF, FC/UPC
	DI-T1ESCS001	DPSK, C+L Band, 50GHz FSR, Tunable, SMF, SC/UPC
50	DI-C1MLCS503	DPSK, C-Band, 50GHz FSR, Tunable, SMF, LC/UPC
50	DI-C1EFAS506	DPSK, C-Band, 50GHz FSR, Tunable, SMF, FC/APC
	DI-A1EFAS517	DPSK, 1064nm, 50GHz FSR, Tunable, PMF (PM780-HP), FC/APC
F2 F	DI-T1EFCS007	DPSK, C+L Band, 53.5GHz FSR, Tunable, SMF, FC/UPC
33.5	DI-C1MFCS007	DPSK, C-Band, 53.5GHz FSR, Tunable, SMF, FC/UPC
55	DI-C1EFCS021	DPSK, C-Band, 55GHz FSR, Tunable, SMF, FC/UPC
67	DI-C1ELCS005	DPSK, C-Band, 57GHz FSR, Tunable, SMF, LC/UPC
57	DI-C1CLCS005	DPSK, C-Band, 57.14GHz FSR, Tunable, SMF, LC/UPC
60	DI-C1ELCS008	DPSK, C-Band, 60GHz FSR, Tunable, SMF, LC/UPC
65	DI-C1MLCC392	DPSK, C-Band, 65GHz FSR, Tunable, SMF, LC/UPC
	DI-C1MLCP010	DPSK, C-Band, 66.67GHz FSR, Tunable, PM Fiber, LC/UPC
<i>cc c</i> ²	DI-L1MLCC407	DPSK, L-Band, 66.67GHz FSR, Tunable, SMF, LC/UPC
00.07	DI-C1MLCC447	DPSK, C-Band, 66.67GHz FSR, Tunable, SMF, LC/UPC
	DI-A1EFAS518	DPSK, 1064nm, 67GHz FSR, Tunable, PMF (PM780-HP), FC/APC
	DI-C2EFCS002	DPSK, C-Band, 80GHz FSR, Tunable, SMF, FC/UPC

Notes:

1) 1.25GHz and 1.0GHz FSR DPSK DLIs are still in engineering phase, not officially released to production yet.

DQPSK DLIs

Optoplex's **Optical DQPSK demodulator** converts *differential quadratural phase modulation* to *amplitude modulation* over the entire C+L band in support of data transmission rates of 20 or 40 Gb/s. DQPSK demodulator is designed for the next generation optical communications systems utilized in commercial, defense and space exploration markets. The device plays a key role in improving signal quality and performance to meet the expanding demand for higher data rates and more complex transmission formats within current and next generation systems without major capital expenditure.

- DQPSK demodulator uses half the transmission rate to achieve the same data rate (20-Gb/s system for 40-Gb/s data rate, with four phase states as compared to two in DPSK format).
- A lower transmission rate saves cost on many other components and electronics and is more tolerant to dispersion.
- 20-Gb/s system is the highest transmission rate possible for the 50-GHz channel spacing system.
- Optoplex's fully integrated DQPSK demodulator combines a power splitter and both I- and Q-arms.

Product Ordering Information

DI	W F	x y y	Z n	n n
W - Wavelength 	F - FSR (GHz) 1 = 40~67 0 = 20~25 A = 10~12.5 B = 5~6.5 C = 2.5~3 D = 1~1.25	X: Type K = Tunable, Std. G = Fast Tuning P = Special Tuning	YY: Connector FA = FC/APC FC = FC/UPC LA = LC/APC LC = LC/UPC SC = SC/UPC	Z: Made S = Standard C = Custom nnn: Sequential (to be assigned by Optoplex)

FSR 1 5 5.7 10 10.7	MPN	Product Description
1 5 5.7 10 10.7	DI-CDKLC433	
5 5.7 10 10.7	51 051120155	DQPSK, C-Band, 1GHz FSR, Tunable, LC/UPA
5.7 10 10.7	DI-CBKFAS526	DQPSK, C-Band, 5.0GHz FSR, Tunable, SMF, FC/APC
10 10.7	DI-CBKSCS001	DQPSK, C-Band, 5.7GHz FSR, Tunable, SMF, SC/UPC
10.7	DI-CAKFAS015	DQPSK, C-Band, 10GHz FSR, Tunable, SMF, FC/APC
	DI-CAKFAS470	DQPSK, C-Band, 10.7GHz FSR, Tunable, SMF, FC/APC
11.4	DI-CAKFCC350	DQPSK, C-Band, 11.4GHz FSR, Tunable, SMF, FC/UPC
12.25	DI-CAKLCS013	DQPSK, C-Band, 12.25GHz FSR, Tunable, SMF, LC/UPC
12.25	DI-CAKSCC400	DQPSK, C-Band, 12.5GHz FSR, Tunable, SMF, SC/UPC
21.5	DI-COKLCS473	DQPSK, C-Band, 21.5GHz FSR, Tunable, SMF, LC/UPC
21.5	DI-COKFAS508	DQPSK, C-Band, 21.5GHz FSR, Tunable, SMF, FC/APC
21.9	DI-COKFAS469	DQPSK, C-Band, 21.9GHz FSR, Tunable, SMF, FC/APC
22.3	DI-COKFCC406	DQPSK, C-Band, 22.3GHz FSR, Tunable, SMF, FC/UPC
23.7	DI-COKFCC440	DQPSK, C-Band, 23.7GHz FSR, Tunable, SMF, FC/UPC
23.76	DI-COKFAC439	DQPSK, C-Band, 23.76GHz FSR, Tunable, SMF, FC/APC
28	DI-COKFAC404	DQPSK, C-Band, 28GHz FSR, Tunable, SMF, FC/APC
31.8	DI-COKSCC385	DQPSK, C-Band, 31.8GHz FSR, Tunable, SMF, SC/UPC
32	DI-COKLCS487	DQPSK, C-Band, 32GHz FSR, Tunable, SMF, LC/UPC
32.5	DI-COKFAC441	DQPSK, C-Band, 32.5GHz FSR, Tunable, SMF, FC/APC
40	DI-C1KFAC471	DQPSK, C-Band, 40GHz FSR, Tunable, SMF, FC/APC
43	DI-C1KFCC394	DQPSK, C-Band, 43GHz FSR, Tunable, SMF, FC/UPC
50	DI-C1KLCS001	DQPSK, C-Band, 50GHz FSR, Tunable, SMF, LC/UPC
53	DI-C1KFAS003	DQPSK, C-Band, 53GHz FSR, Tunable, SMF, FC/APC
56	DI-C1KFCS002	DQPSK, C-Band, 56GHz FSR, Tunable, SMF, FC/UPC
58.5	DI-C1KSCC382	DQPSK, C-Band, 58.5GHz FSR, Tunable, SMF, SC/UPC

90deg Optical Hybrid

Optoplex's **Optical DQPSK demodulator** converts *differential quadratural phase modulation* to *amplitude modulation* over the entire C+L band in support of data transmission rates of 20 or 40 Gb/s. DQPSK demodulator is designed for the next generation optical communications systems utilized in commercial, defense and space exploration markets. The device plays a key role in improving signal quality and performance to meet the expanding demand for higher data rates and more complex transmission formats within current and next generation systems without major capital expenditure.

- DQPSK demodulator uses half the transmission rate to achieve the same data rate (20-Gb/s system for 40-Gb/s data rate, with four phase states as compared to two in DPSK format).
- A lower transmission rate saves cost on many other components and electronics and is more tolerant to dispersion.
- 20-Gb/s system is the highest transmission rate possible for the 50-GHz channel spacing system.
- Optoplex's fully integrated DQPSK demodulator combines a power splitter and both I- and Q-arms.

	Parameter	Unit	Specification	Oppopper
elength Ra	nge ¹	nm	C-band, or	and the state of t
se Differen M4)	$e^{1,2}$ (between M ₁ , M ₂ and	deg	90 ± 10	
rtion	S→I	dB	< 9.0	
	L→Q	dB	< 9.0	
rtion	betwn S \rightarrow I ₁ and S \rightarrow I ₂	dB	< 1.2	
tion	btwn S \rightarrow Q ₁ and S \rightarrow Q ₂	dB	< 1.2	
erence	btwn L \rightarrow I ₁ and L \rightarrow I ₂	dB	< 1.2	
1.0.1	btwn L \rightarrow Q ₁ and L \rightarrow Q ₂	dB	< 1.2	i
ical Return	Loss	dB	> 27	
ical Path Di and M ₂ and	fference (skew, between between M₃ and M₄)	ps	< 1	Incoming Signal
ical Path Di ports)	fference (skew, between		<1	Polarization + 90° Optical Sector 1 Detector 1 Ta
:				Controller Hybrid S+IR Belanced Detector 2 7
MD/N	elength Bands: C-, L-, C+L, O-I	Broducto	1064+/-5nm.	Reference
		Froducts		1
-COAFASOO	2 90-degree Optical Hyb Phase 90±10°	rid, C-Banc	I, SMF for All Ports,	319
3-COAFAS01	3 90-degree Optical Hyb Phase 90±5°	rid, C-Banc	l, SMF for All Ports,	
HB-COAFAC016 90-degree Optical Hyb (both Signal- and Lo-), 90+10°		rid, C-Band SMF for Al	l, PMF for Input Ports l Output Ports, <mark>Phase</mark>	
HB-COAFAC057 90-degree Optical Hyb (both Signal- and Lo-), 90±5°		rid, C-Banc SMF for Al	l, PMF for Input Ports I Output Ports, <mark>Phase</mark>	
3-COAFAC05	5 90-degree Optical Hyb Output Ports, Phase 90	rid, C-Banc <mark>)±10°</mark>	l, PMF for All Input and	
B-COAFASO6	6 90-degree Optical Hyb Output Ports, Phase 90	rid, C-Banc)±5°	l, PMF for All Input and	
B-LOAFAS09	4 90-degree Optical Hyb Phase 90±10°	rid, L-Band	, SMF for All Ports,	Features Applications Athermal design High-speed optical comm. (DQPSK)
3-TOAFASO9	5 90-degree Optical Hyb Phase 90±10°	rid, C+L Ba	nd, SMF for All Ports,	Low (TDFS, PDFS, IL & PDL) Free-space laser communication Control
-Q0AFAS131	.0 90-degree Optical Hyb Phase 90±10°	rid, O-Bano	d, SMF for All Ports,	Wide bandwidth High power handling Televordia GP, 1221 gnalified
-A0AFAP106	90-degree Optical Hyb All Ports, Phase 90±10	rid, 1064+/ •	⁷ -5nm, HI1060 SMF for	Optical spectroscopy
				Ordering Information:
gnal		\sim	P P P Q	HB W 0 X Y Y Z n n n W-Wavelength X:Type FA = FC/APC FA = FC/APC FA = FC/APC S = Standard S = Standard L = L-Band Q = O-Band Q = 2NBAM G = 2x8 Mixer YY: Connector S = Standard S = Standard L = L-Band D = 2x8 Mixer G = 2x8 Mixer Image: Column Co
			D -	

180deg Optical Hybrids

Port	Function	Phase Difference	Value
1	Local		L
2	Signal		S
3	M1	0	S + L
4	M ₂	π	S - L

Device Dimension	Unit	Spec
L×W×H	mm	25.4 x 25.4 x 10

Parameter		Unit	Specification
Wavelength Range (C- or	L-Band)	nm	1527 ~ 1567
Phase Difference1 (betwee	n M1, M2 and M3, M4)	deg	180±5
Insertion Loss1 (without	$S{\rightarrow}M_i$	dB	< 5.5
connector)	$L{\rightarrow}M_i$	dB	< 5.5
	$S{\rightarrow} M_1 and S{\rightarrow} M_2$	dB	< 0.5
Insertion Loss Difference ¹	$L{\rightarrow}M_1 and L{\rightarrow}M_2$	dB	< 0.5
	Between all other ports	dB	< 0.7
Optical Return Loss		dB	> 27
Optical Path Difference (sl	xew, between M1)	ps	< 5
	Signal Input Port	/	SMF-28 with 900-µm tight buffer
Fiber Type	Local Input Port	/	SMF-28 with 900-µm tight buffer
	Outputs	/	SMF-28 with 900-µm tight buffer
	Signal Input Port	mm	1000 ± 100
Pigtail Length	Local Input Port	mm	1000 ± 100
	Outputs	mm	1000 ± 100
	Signal Input Port		FC/APC
Type of Connector	Local Input Port		FC/APC
	Outputs	-	FC/APC

MPN	Description	Note
HB – C0KFAS180	180 Optical Hybrid, C-Band, SM Fiber for all ports, FC/APC for all-ports	
HB – C0KFAP180	180 Optical Hybrid, C-Band, PM Fiber for all ports, FC/APC for all-ports	
HB – C0KFA <mark>X</mark> 180	180 Optical Hybrid, C-Band, PM Fiber for both Signal- and Lo- Input ports, SM Fiber for Output Ports; FC/APC for all-ports	

See below selection guide for other wavelength bands and type of connectors

2x4 Coherent Mixer

Optoplex's 2x4 polarization diversified optical hybrid (aka QPSK Mixer) mixes an incoming signal with a local oscillator. The device features a monolithic optical core integrating a PBS with an interferometer which is also widely used in Optoplex's interleavers and DPSK-demodulators. This device is athermal, colorless, data-rate independent and compact size. The four outputs of this device can be coupled with four single-ended detectors (see the function diagram below). This platform can also be extended to a 2x8 polarization diversified hybrid to incorporate with 4 pairs of balanced detectors.

The QPSK mixer is a key building block in the ever-popular polarization- and phase-diversified QPSK modulation scheme which is not only one of the leading contenders for the 100-Gb/s systems but also a significant cost-effective alternative for the 40-Gb/s systems where 10-Gb/s modulator and electronics can be used.

2x8 Coherent Mixer

To be used for optical coherent detection such as DP-QPSK receivers, Optoplex's ten-port **2x8 Coherent Mixer** (aka QPSK mixer) combines the incoming signal with a local oscillator to generate eight light states in the complex-field space. The eight light output signals can then be coupled into four pairs of balanced photodetectors. The block diagram below shows the application of a **2x8 coherent mixer** in a DP-QPSK receiver. Since the mixing process is data rate independent, the devices can be used for any data rate in applications such as 40Gb/s or 100Gb/s transmission systems.Optoplex's **2x8 Coherent Mixer** is free-space micro-optics-based and patent pending. The device exhibits highly athermal behavior in terms of insertion loss and phase error. When the output signals are detected by four pairs of balanced receivers, both the amplitudes and the relative phase information of the input signal can be extracted for signal amplification and for cost-effective compensation to optical transmission impairments, such as dispersion and PMD, in the electronic domain.

Integrated 90deg Hybrid Coherent Receivers

This document describes one of Optoplex's innovated products, a 90deg optical hybrid integrated with balanced photo-receivers, which can be used in optical sensing applications, particularly the coherent Doppler wind LIDAR (light detection and ranging). A photo of the product can be seen in Figure 1.1.

Coherent detection has been widely found in applications for RF and optical communications. In the past few years, coherent technology has been advanced dramatically in high-speed optical communications. With this advancement, key parts and components are commercially available and cost-effective for many applications beyond telecommunications, such as narrow linewidth lasers, optical hybrid, balanced photo-receivers, and DSP, etc.

High-performance 90deg optical hybrid is an important part in optical coherent detection. Optoplex's free-space, micro-optics-based, and passive 90deg Optical Hybrid is a mixer in *coherent* detection and has been widely used in both 40Gbps and 100Gbps coherent transmission systems in optical communications. In addition to 90deg optical hybrid, 2x4 coherent mixer and 2x8 coherent mixer, Optoplex has developed and supplied integrated 40G and 100G coherent receivers as well.

In Doppler LIDR applications, 90deg optical hybrid is a must-have component. Compared to conventional mixer using fiber optic couplers, it won't be able to provide information about wind vector. While, because 90deg optical hybrid provides the 90deg phase information between I- and Q- paths, it can yield to the wind vector information

Figure 1.2 below illustrates the functional block diagram of the integrated 90deg optical hybrid with balanced photoreceivers.

The integrated 90deg hybrid receiver could have 3dB electrical bandwidth of 15, 100, 200, 400MHz, or 1.6GHz. The default RF output mode is AC-coupled. DC coupled version is also available. 1. Optical Performance of 90deg Hybrid. Refer to 90deg Optical Hybrid

Parameter	Unit	Min	Тур.	Max
Type of Detector			InGaAs	
Wavelength Range	nm	1510		1670
Responsivity, Typical	V/W		8	
RF Output Bandwidth (3dB)	MHz	DC		100
Common Mode Rejection Ratio (CMRR)	dB	20	30	
Transmission Gain	V/A		50x10 ³	
Conversion Gain RF Output	V/A		50x10 ³	
CW Saturation Power	$\mu\Omega$		72	
NEP (DC - 10MHz)	pW/		3.8	
Integrated Noise (DC - 100MHz)	nW _{RMS}		65	
Overall Output Voltage Noise	mV _{RMS}		2.2	
RF Output Impedance	Ω		50	
RF Output Voltage Swing	V			-3.6
DC Offset RF Output	mV			+/-3
Max Optical Input Power	mW			20
Power Supply, Voltage	V			+/-12
Power Supply, Current	mA			200
Electrical Output Interface		SMA		

Parameter	Unit	Min	Тур.	Max		n Ontonlex		
Type of Detector			InGaAs	-	SIGNAL	CORPORATION	RF O	итрит
Navelength Range	nm	1510		1670	LOCAL	Coherent Receiver	DC	
Responsivity, Typical	v/w		8					
RF Output Bandwidth (3dB)	MHz	DC		100		CONCEPTIONS CONCEPTION CONCE		
Common Mode Rejection Ratio (CMRR)	dB	20	30					
Transmission Gain	V/A		50x10 ³		Features		Арр	lications
Conversion Gain RF Output	V/A		50x10 ³		 Free-space optics based 90 Accurate 90deg phase diffitemperature, wavelength dependence 	Odeg optical hybrid erence, small and polarization	Co Co ser	herent Doppler LIDAR system herent detection in fiber nsing herent detection in OCT and
CW Saturation Power	$\mu\Omega$		72		Superior optical performants	nce (IL, TDL, PDL,	oth	ner biomedical sensing/imagi
NEP (DC - 10MHz)	pW/		3.8		Skew, etc.)Low dark current		• Co	stems herent spectroscopy
Integrated Noise (DC - 100MHz)	nW _{RMS}		65		High CMRRHigh PER		ins • Co coi	trumentation herent detection in optical mmunications
Overall Output Voltage Noise	mV _{RMS}		2.2		BW Input Fiber	P/N of 90deg Hyb	id Rx	Natas
RF Output Impedance	Ω		50		15MHz BW, PMF	RX-KC0015P8	11	Notes
					15MHz BW, SMF	RX-KC0015S8	12	
RF Output Voltage Swing	V			-3.6	100MHz BW, PMF	RX-KC0100P80	1	
DC Offset RE Output	mV			+/-3	100MHz BW, SMF 200MHz BW, PMF	RX-KC0100S8 RX-KC0200P8	02 03	
				., 5	200MHz BW, SMF	RX-KC0200S8	04	
Max Optical Input Power	mW			20	350MHz BW, PMF	RX-KC0350P8	05	
					350MHz BW, SMF	RX-KC0350S8	06	
Power Supply, Voltage	V			+/-12	400MHz BW, PMF	RX-KC0400P8	07	
Power Supply, Current	mA			200	700MHz BW, SMF	RX-KC040058	08	
					700MHz BW, SMF	RX-KC0700S8	10	
Electrical Output Interface			SMA		1.6GHz BW, PMF	RX-KC1600P8	15	
					1.6GHz BW, SMF	RX-KC1600S8	16	
1) The 90deg hybrid is indeper 2) The above table is for 100M bandwidths, such as 200, 35 Optoplex for details.	ndent of speed IHz BW of the Ba 50, 700 and 1200	lanced Photo), and 1700N	oreceivers. For IHz, please con	other tact	Notes: 1) for 90deg hybr 2) For the balanc Output. Output. 3) For 1.6GHz one	rid, we also offer for O- ed receiver output, opt e, only AC-coupled outp	Band. ions are out availa	either DC- or AC-coupled RF able
Signa 90deg Optical Hybrid		90deg Hy	brid with B	alanced	Ordering Information	Electrical Bandwidth 015: 15MHz 100: 100MHz 200: 200MHz 400: 400MHz 166: 1.66Hz		Sequential Number 7xx: 7-Series (Optoplex to de D: DC: Coupled A: AC-Coupled

Optoplex Corporation, 48500 Kato Road, Fremont, CA 94538, USA Tel: (510) 490-9930, Fax: (510) 490-9330, sales@optoplex.com, www.optoplex.com

2x8 Coherent Receivers

		•								
2x8 Polarization D Mixer) with Integr	iversifie rated Ba	d 90de lanced	g Hybrid (receiver	aka 2x8	3 Coherent	2x8 Coherent Mixer wit S	ingle-ended	Photode	tector	
 Optical Performa Hybrid. Electrical Performance Parameter 	ance of S mance. S Unit	90deg H See bel Min	Hybrid. Ref ow table. Typ.	fer to 9	Odeg Optical	Signal Input SM PM	s Hybrid	-x		L-1x i-2x Q-1x Q-2x
Type of Detector			InGaAs			PB	L _v Hybrid	Y		▲ I-1y
Wavalangth Banga		1510		1670		Local Oscillator Input (L)	nyona			
Responsivity	nm	1310		1670						
Typical	A/W		0.9							
RF Output Bandwidth (3dB)	MHz	DC		100						1
Common Mode						Parameter	Unit	Min	Max	
Rejection Ratio	dB	20	30			Storage temperature range	°C	-40	85	
(CNIKK) Transmission Gain	V/A		25×10^3			Storage humidity	%	5	95	
Conversion Gain	7/11		25810			Accumulated maximal optical	dBm	17	-	
RF Output	V/W		22.5x10 ³			input power	dBm	17	-	
CW Saturation Power	$\mu\Omega$		110				V	-0.3	5.6	
NEP (DC - 10MHz)			3.8			Photodiode bias voltage				
Integrated Noise			65				mA		5	
(DC - 200MHz)	n vv RMS		0.5			Photodiode (reverse) bias current	t			
Voltage Noise	mV_{RMS}		2.2				V	250	_	
RF Output	Ω		50			Electro static discharge (ESD)	,	200		
RF Output Voltage						voltage	C = 100 pF; Body Mode	$R = 1.5 \text{ k}\Omega;$	Human	
Swing	V			-3.6				-		
DC Offset RF	mV			+/-3			and the second second	a series and	1000	
Max Optical Input	mW			25		DOpu	oplex	A		
Power				25		Zet Convertion with Bringle M Press Res Convertion	Reveter Reveter Bourgart MPTER	-		
Voltage	V			12		E-59	H.L.			
Power Supply,	mA			200						
Output Coupling		٨	-coupled out	put		TY				
Electrical Output		A	-coupied out	put						
Interface			SMA					m	these	-
Notes: 3) The 90deg hyl 4) The above tab bandwidths, s Optoplex for c	orid is indep le is for 100 uch as 200, letails.	oendent o OMHz BW 350, 700	of speed of the Balance and 1200, an	ced Photo d 1700MI	receivers. For other Hz, please contact					
Functional Block L Balanced Receiver	Diagram r	of Inte	grated 900	deg Hyt	orid with					
Incoming Signal Local Oscillator	2 x 8 Cohere Mixer	nt	SX+LX SX-LX SX+JLX SX-JLX SX-JLX SY-LY SY-LY SY-LY Ba SY+JLY Ba SY-JLY Ba	lanced tector lanced tector lanced tector		48.0±0.2		48-		
			The second second		_		H. 1. 1.	4.1-		<u>++++</u>
	1					ordening information:				
50 i.c	Int nat	Concord egrated 23 Coherent	POPATION (8 DP-QPSK Receiver	RF Output		Product: 2x8 Coherent Mi MPN: RX-GC50AP201 Product: Integrated 2x8 D Part Number Desc RX-KC01005901AC Integ 100N Rx-KC02005903AC Integ 200N	xer with Sing PP-QPSK Coh ription grated 2x8 DP-QP VHz BW, AC-Coup grated 2x8 DP-QP VHz BW, AC-Coup	le-ended	Photode ceiver Mixer with SMA Mixer with SMA	tector Output Balanced Receiver, Balanced Receiver,
				DC Input	•	RX-KC03505905AC Integ 350N	grated 2x8 DP-QP MHz BW, AC-Coup	SK Coherent bled Output,	: Mixer with SMA	Balanced Receiver,

Balanced Photoreceivers

Coherent detection has been found increasing applications in fiber sensing as well as in conventional RF and optical communications. In the past several years, coherent technology has been advanced dramatically in high-speed optical communications. Whit this, key parts and components (such as narrow linewidth lasers, optical hybrid, balanced photo-receivers and DSP, etc.) are commercially available and cost-effective for many applications beyond telecommunications.

Optoplex has developed a series of products for coherent applications. They are

- 90deg optical hybrid 2x8 coherent mixer
- •
- Integrated 40G coherent receiver (40G ICR) Integrated 100G coherent receiver (100G ICR)
- 90deg optical hybrid integrated with balanced receiver
- 2x8 coherent mixer with photodiode outputs, and
- Balanced Photoreceivers

Optoplex's balanced photoreceiver is designed for optical coherent detection for non-telecom applications. It features a pair of photodiodes that are well matched and balanced in responsivity, bandwidth and noise, etc. The outputs of the photodiodes are amplified by low-noise TIA to produce a single RF output that is proportional to the difference between the photo-currents from the two photodiodes

The photoreceiver has a 3dB bandwidth of about 100MHz. The RF output swing is +/-3.6V for high impedance load (±1.8 V into 50 Ω). The CMRR is better than 20dB (with a typical value of 30dB).

Examples of Coherent Detections

Optical Interleavers

Optoplex's **Optical Interleaver** products are based on our patented *Step-Phase Interferometer* design. Used as a DeMux (or Mux) device, an optical interleaver separates (or combines) the Even and Odd channel signals (see the schematic diagrams in Figure 1 below). Each optical interleaver device is optimized to cover either C-, L-, C+L, or O-Band wavelengths. Other wavelength bands can be made upon request. The current optical interleaver product family supports 200-400, 100-200, 50-100, 25-50, and 12.5-25 GHz and other custom channel spacings, such as 75-150, 66.67-133.33, 40-80, 375.-75, 33.33-66.67, and 20-40GHz. The DeMux and Mux interleavers can be effectively co-packaged into a single box for easy handling and cost-saving. Dual-stage optical interleavers (such as 25-100 GHz channel spacing) and asymmetric interleavers (Even and Odd channels have different passband bandwidths) are also available.

Optoplex is the technology and marker leader on optical interleavers. It was the first one to produce 25-50GHz one in volume production; the first one to provide Mux/DeMux co-package solution; the first one to offer Super Interleaver ("super-wide passband"), the first one to supply O-Band interleavers for 5G front-haul mux/demux application, ... etc.. Optoplex has been supplying optical interleaver to all major global telecom equipment manufacturers for optical communications including terrestrial, subsea and aerospace applications.

16

Asymmetric Interleaver

Usually, an optical interleaver offers symmetric optical spectral profiles for both odd- and even- output ports (except for the frequency off-set applied on one port with respect to the other). Optoplex is able to design "asymmetric interleaver" from which the odd and even output spectra is asymmetric, for instance, 70% bandwidth for the odd channel and 30% for the even channel. The ratio can be custom designed to satisfy your demanding applications.

Normally, the signal spectral profiles (bandwidths) are different for signals of different data rates. For instance, 100Gbps signal's spectrum is wider than 40Gbps', and 40Gbps' is wider than 10Gbps'. With Optoplex's Asymmetric Interleavers, one can easily Mux different data rates' signals together, or oppositely DeMux different data rates' signals. Asymmetric interleaver can be made for any channel spacing.

Co-Packaged Solution

 Optoplex has proprietary technology to design and manufacture "co-packaged" interleaver Features

 that is a Mux and a DeMux interleavers share the same optics in a package with the same form factor as used in an individual interleaver. Compare to discrete (using two individual interleavers, one as a Mux and another one as a DeMux) approach, Optoplex's Co-Packaged solution offers below:
 Save 50% space (compared to that of individual solution where a separate Mux and DeMux are used)

 At least 30% of cost-saving than the individual solution
 Same performance (as individual approach)

 Same reliability (as individual approach)
 Proven track records

Multiple-Staged Interleaver

Etalons

Optoplex's Inline Fabry-Perot Air-Gap Etalon is based on its proprietary free-space optics technology that offers superior optical performance and excellent environmental stability. With in-situ monitoring and adjustment in manufacturing, the FSR (free-spectrum range) can be made very accurately to the required spec (such as 50, or 100GHz). Also, the peak wavelength can be aligned very precisely to what the customers need.

Optoplex provides a wide selection of F-P Etalons covering different wavelength ranges for C-, L-, C+L, or O-band with different FSR from 200GHz, 100GHz, 50GHz, 25GHz, 12.5GHz to 6.25GHz.

Parameter	Symbol	Unit			FSR (GHz)			
Free Spectral Range (FSR)	FSR	GHz	400	200	100	50	25	12.5	6.5
FSR Tolerance	∆FSR	GHz	±0.3	±0.2	±0.1	±0.05	±0.05	±0.03	±0.02
Center Frequency Alignment at room temperature	$\Delta \phi$	GHz	±3.0	±2.5	±1.5	±1.0	±0.5	±0.4	±0.3
Temperature dependent frequency shift	TDFS	MHz/° C	50	40	30	30	30	N/A	N/A

Features

- Low insertion loss Precise peak wavelength
- (frequency) setting
- Extremely environmental stability (+/-1.5GHz lifetime)
- Compact size • Wide selections of wavelength coverages
- Large selections of FSR: 200, 100, 50, 25, 12.5, 6.25 or customer specific

Option with PM fiber available

Applications

- DWDM filtering
- Comb light source
- Inter-channel noise suppression Wavelength reference
- Signal shapingSpectroscopic Optical
- instrumentation

Type-A:	Single-T	ransm	ission

Type-B: Double Transmission

Insertio	on Lo	oss (d	B)								Insertio	n Los	s (dB)							
Mirror Reflectan	ice 4	100GHz	200 GHz	100 GHz	50 G	lz 25	6 GHz	12.5GHz	6.25GHz	:	Mirror Reflectar	nce 4	00GHz	200 GHz	100 GHz	50 GHz	25 GH	lz 1	2.5GHz	6.25GHz
31%		1.2	1.2	1.2	1.5		1.5	2.0	2.5		31%		2.4	2.4	2.4	3.0	3.0		4.0	N/A
45%		1.2	1.2	1.2	1.5		1.5	2.0	2.5		45%		2.4	2.4	2.4	3.0	3.0		4.0	N/A
50%		1.2	1.2	1.2	1.8		1.5	2.0	3.0		50%		2.4	2.4	2.4	3.6	3.0		4.0	N/A
64%		1.2	1.2	1.2	2.0		2.0	2.5	3.5		64%		2.4	2.4	2.4	4.0	4.0		5.0	N/A
70%		1.5	1.1	1.1	2.5		2.5	3.0	4.0		70%		3.0	2.2	2.2	5.0	5.0		6.0	N/A
80%		1.5	1.1	1.1	2.0		2.5	3.5	4.5		80%		3.0	2.2	2.2	4.0	5.0		7.0	N/A
90%		2.0	2.0	2.0	3.0		3.0	45	5.0		90%		4.0	4.0	4.0	6.0	6.0		9.0	N/A
94%		2.5	2.5	3.0	3.5		4.0	5.5	6.0		94%		5.0	5.0	6.0	7.0	8.0		N/A	N/A
97%		3.0	3.0	3.5	4.0		5.0	6.5	7.0		97%		6.0	6.0	7.0	8.0	N/A	۱.	N/A	N/A
3dB BW											3dB BW									
				Mirro	r Reflecta	ince									Mirro	r Reflecta	nce			
FSR (GHz)	0.31	0.45	0.5	0.64	0.7	0.8	0.9	0.94	0.97		rok (anz)	0.31	0.45	0.5	0.64	0.7	0.8	0.9	0.94	0.97
6.25	2.66	1.68	1.44	0.90	0.72	0.45	0.21	0.12	0.06		6.25	1.63	1.05	0.91	0.58	0.46	0.29	0.13	0.08	0.08
12.5	5.32	3.36	2.88	1.81	1.43	0.89	0.42	0.25	0.12		12.5	3.26	2.12	1.82	1.15	0.92	0.57	0.27	0.16	0.17
25	10.64	6.72	5.75	3.61	2.87	1.78	0.84	0.49	0.24		25	6.51	4.24	3.65	2.31	1.84	1.14	0.54	0.32	0.34
50	21.27	13.45	5 11.50	7.22	5.74	3.57	1.68	0.99	0.48		50	13.03	8.48	7.29	4.62	3.67	2.29	1.08	0.63	0.67
100	42.54	26.89	9 23.01	14.45	11.48	7.13	3.36	1.97	0.97		100	26.06	16.96	14.58	9.23	7.35	4.58	2.16	1.27	1.34
200	85.09	53.78	8 46.01	28.90	22.95	14.27	6.71	3.94	1.94		200	52.12	33.92	29.17	18.46	14.69	9.15	4.31	2.53	2.69
400	170.18	107.5	6 92.02	57.79	45.90	28.53	13.43	7.88	3.88		400	104.23	67.85	58.34	36.93	29.39	18.30	8.62	5.05	5.38
Mirror Reflectanc	e Fir	nesse (Peak-to-Valle Contrast Rati (dB)	o							Mirror Reflectance	Finess	e Conti	to-Valley rast Ratio (dB)						
31%		2.5	5								31%	3.5		10						
45%		3.5	8	_							45%	6		16						
50%	_	4	9	_							50%	7	_	18						
		7	10	1								1								

Notes:

70%

80%

90

94

97

7 8.5

14

30

50

100

14

18

23

26

33

Type-A is the standard design of the free-space optics-based etalon.

Type-B is a special design to provide higher peak-to-valley contrast ratio (almost 2X). The bandwidth of Type-B is slightly narrower (~0.7X of Type-A's). The insertion loss of Type-B is higher than Type-A's (~1.5 -2.0X)

14

22

46

79

74

70%

80%

90

94

97

27

35

40

45

55

Please note that the 3dB BWs in above table are the ideal simulation results assuming insertion loss (IL) = 0deb. In practice, the IL varies from etalon to etalon, depending on FSR and • R% coating. See above Table. For detail explanation of the FWHM, see next page.

FWHM (3dB BW) of Etalons

Simulation Spectra (ideal Situation, IL = OdeB), for reference only

Etalon with a Built-in Wavelength Reference

Model and Part Number Definition

Flat-Top Comb Filter

Optoplex provides customized **flat-top optical comb filter** based on its <u>optical interleaver</u> technology. In contrast with traditional Fabry-Perot cavity-based comb filter, Optoplex's **comb filter** is capable of transmitting modulated DWDM signals with its passband width available anywhere down to a few GHz. Both the filter channel spacing (FSR) and filter duty cycle (3-dB bandwidth to FSR ratio) can be specified by customers.

Features

Applications

- Noise Suppression in DWDM System
 Reshape Signal Passband
 Optical Ruler in DWDM System

filter is capable of transmitti anywhere down to a few GHz bandwidth to FSR ratio) can be Based on Optoplex's patented film coating, the flat-top co temperature dependence, fla insertion loss. The product is T	ing modulate z. Both the f e specified by I technologie mb filter is at-top passb elcordia GR-2	abry-Pero ed DWDW ilter chan customer s of micro a purely and, high L221 quali	cavity-based signals with hel spacing (F s. -optics and pl passive dev channel isol fied.	its passband SR) and filter hase modulati ice characteri ation, low PE	Uptoplex's co width availa duty cycle (3 on through th zed by mini DL, and unifo	mb • W ble • Mi •dB • Hi, inin- • Mi mal • Lo rrm • Du • Te	ide and Flat Pa inimal PDL gh Isolation inimal Therma w and Custom ial C- and L-Ba lcordia GR-122	ssband Drift zable Dispersio Id Coverage 1/63 Qualified	n	Noise Supp Reshape Sig Optical Rule Passband R High Modu	ression in I gnal Passba er in DWDM eduction o lation Rate
				Туре	-S: Stan	dard		Ту	/pe-D: D	Jual-Sta	ge Des
Parameter	Symbol	Unit	200GHz	100GHz	50GHz	25GHz	12.5GHz	200GHz	100GHz	50GHz	25GHz
Operating Wavelength Range		nm		С-В, І	., C+L, or O-E	land			С-В,	L, C+L, or O-	Band
Free-Specral Range	FSR	GHz	200	100	50	25	12.5	200	100	50	25
Passband Width @0.5dB	BW1	GHz	76	36	18	9	4.5	75	35	17	8
Passband Width @ 1.0 dB	BW1	GHz	82	42	22	11	5	80	40	20	10
Passband Width @ 3.0 dB	BW3	GHz	95	47	23	11.5	5.5	93	45	22	11
Passband Width @ 10 dB	BW ₁₀	GHz	120	60	30	15	7.5	105	50	27	13
Passband Width @ 20 dB	BW ₂₀	GHz	140	70	35	20	10	120	60	30	15
Passband Width @ 30 dB	BW ₃₀	GHz	N/A	N/A	N/A	N/A	N/A	135	65	33	17
Passband Width @ 40 dB	BW ₄₀	GHz	N/A	N/A	N/A	N/A	N/A	145	70	35	20
Spectral Peak Alignment		GHz		ITU, or	customer sp	ecific			ITU, o	r customer s	pecific
Channel Center Frequency Error (CCFE)	CCFE	GHz	+/-1.0	+/-1.0	+/-0.75	+/-0.5	+/-0.5	+/-1.0	+/-1.0	+/-0.75	+/-0.5
Peak Insertion Loss	IL	dB	2	2.2	2.2	2.5	2.5	4	4.2	4.2	4.5
IL Uniformity	dIL	dB	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Peak-to-Valley Isolation	ISO	dB	>20	>20	>20	>20	>20	> 40	> 40	> 40	> 40
PDL	PDL	dB	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Return Loss	ORI	dB	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40	> 40

								Fomb Fi
			Type-A	: Specia	l Design	1		
Parameter	Symbol	Unit	200GHz	100GHz	50GHz	25GHz	12.5GHz	
Operating Wavelength Range		nm		С-В, Ц	., C+L, or O-E	Band		
Free-Specral Range	FSR	GHz	200	100	50	25	12.5	
Passband Width @0.5dB	BW1	GHz	20	10	4.5	2	1	
Passband Width @ 1.0 dB	BW1	GHz	25	12	6.0	3	1.5	
Passband Width @ 3.0 dB	BW ₃	GHz	43	21	10	5	2.5	
Passband Width @ 10 dB	BW ₁₀	GHz	60	30	15	8	4	
Passband Width @ 20 dB	BW ₂₀	GHz	90	45	22	12	7	
Passband Width @ 30 dB	BW ₂₀	GHz	N/A	N/A	N/A	N/A	N/A	Comb F
Passband Width @ 40 dB	BW ₂₀	GHz	N/A	N/A	N/A	N/A	N/A	
Spectral Peak Alignment		GHz		ITU, or	customer sp	ecific	•	6391 134083 81391 (R25)
Channel Center Frequency Error (CCFE)	CCFE	GHz	+/-1.0	+/-1.0	+/-0.75	+/-0.5	+/-0.5	107 020
Peak Insertion Loss	IL	dB	4.0	4.0	4.0	4.5	4.5	3.543 (98.00)
IL Uniformity	dIL	dB	0.7	0.7	0.7	0.7	0.7	3347 06500
Peak-to-Valley Isolation	ISO	dB	>20	>20	>20	>20	>20	
PDL ¹	PDL	dB	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.09
Return Loss ¹		dB	> 40	> 40	> 40	> 40	> 40	

Comb Filter vs. F-P Etalon Filter

Both filters are periodic optical filters. The periodicity is defined by the channel spacing or called free-spectral-range (FSR). Etalon has a gaussian-like spectral top, while Optoplex's comb filter has a flat-top and much-square-like spectral shape that offers much better peak-to-valley isolation (or contrast ratio, or side-band rejection ratio). See the Figure at the right.

Types of Comb Filter Designs

- Type-S: A standard design offers about 20 ~ 25dB isolation
- Type-D: A Dual-Stage design of the standard one (Type-S), offers almost 2X isolation. Due to dual-stage design, the
 package form is only in Module.
- Type-A: A special design (Optoplex's proprietary technology) that offers 2X narrower 3dB Bandwdith of the standard one.

Custom Design

- Bandwidth: based on Type-A design, Optoplex's has the special expertise to custom design and make the comb filter
 to tailor the bandwidth to meet customer specific requirement.
- Slope: Optoplex has special expertise to design the comb filter with very steep slope and/or very high isolation. This is particularly useful in application such as optical sensing (Rayleigh, Raman or Stokes) where the signal is very weak (compared to the excitation laser) and very close to the excitation laser.

Wavelength Locker

- Optoplex's Athermal Fabry-Perot Wavelength Locker is a thermally stable, etalon-based device that can be widely used in wavelength monitoring or ITU-grid channel locking in DWDM systems, laser stabilization for tunable laser, optical power and network monitoring. The wavelength locker has a wide capture range and excellent wavelength accuracy. A built-in thermistor can be used to calibrate out residue thermal effects when even higher wavelength accuracy is required or for a very narrow-FSR locker. The key optical component of the wavelength locker is an Etalon which is made in-house with Optoplex's proven technology in thin-film optical coating and optical contact.
- Features
 - Athermal design
 - C+L-band coverage by a single device
 - Extremely low temperature dependence
 High wavelength accuracy
 - Periodical locking covers all channels
 - Built-in thermistor for better locking
 - accuracyTelcordia GR-468 & 1221 compliant

Applications

- Precision laser locking for DWDM and ultra DWDM transmitter
- Wavelength monitoring
 Laser stabilization for tunable laser
- module
- DWDM channel frequency and optical power monitoring

Parameter	Unit	12.5GHz	25GHz	50GHz	100GHz	200GHz
				C-Band: 1525	-1565	
				L-Band: 1560	-1620	
Wavelength Range	nm			C+L Band: 152	0-1620	
				O- Band: 1260	0-1360	
				1064nm +/ 1	.0n m	
Center Wavelength				ITU, or cu	stomer specific	
Wavelength Accuracy over T, Pol and FOI	GHz	±0.75	±1.25	±1.50	±1.50	±1.50
Polarization Dependent Accuracy	GHz	0.4	0.4	0.6	0.6	0.6
Wavelength Capture Range (from ITU)	GHz	5	9	18	30	30
Locking Slope at ITU Point	dB/GHz	~ 0.5 – 0.8	~ 0.5 – 0.8	~ 0.5 – 0.8	~ 0.5 - 0.8	~ 0.5 – 0.8
Input Power Range	dBm	<10	<10	<10	<10	<10
ORL Min	dB	45	45	45	45	45
PD Calibration Offset	dB	0.4	0.4	0.6	0.6	0.6
PD1 Responsivity (Reference)	A/W	0.1 to 0.4	0.1 to 0.4	0.16 to 0.32	0.16 to 0.32	0.16 to 0.32
PD2 Responsivity (Etalon)	A/W	0.1 to 0.4	0.1 to 0.4	0.16 to 0.32	0.16 to 0.32	0.16 to 0.32
PD Dark Current @5V (reverse bias)	nA	1	1	1	1	1
Temperature Sensor Supply Voltage	V	4 to 10	4 to 10	4 to 10	4 to 10	4 to 10
Temperature Sensor Monitor	mV/C	7 to 13	7 to 13	7 to 13	7 to 13	7 to 13

	r
MPN	Product Description
WL-COAXXS001	25GHz FSR, C-Band, SMF, No Connector
WL-C1CXXS003	50GHz FSR, C-Band, SMF, No Connector
WL-C1CFCS017	50GHz FSR, C-Band, SMF, FC/UPC
WL-C2CXXS004	100GHz FSR, C-Band, SMF, No Connector
WL-CACXXC006	12.5GHz FSR, C-Band, SMF, No Connector
WL-TACFCC028	12.5GHz FSR, C+L Band, SMF, FC/UPC
WL-A2CFAS030	100GHz FSR, 1064nm+/-10nm, HI-1060 SMF, FC/APC
WL-Q0CFAS031	25GHz FSR, O-Band, SMF, FC/APC
WL-Q1CFAS032	50GHz FSR, O-Band, SMF, FC/APC
WL-Q1CFAS033	100GHz FSR, O-Band, SMF, FC/APC
WL-Q2CFAS034	200GHz FSR, O-Band, SMF, FC/APC
	MPN WL-COAXXS001 WL-C1CXXS003 WL-C1CFCS017 WL-C2CXXS004 WL-CACXXC006 WL-ACFAS030 WL-ACCFAS031 WL-Q1CFAS032 WL-Q1CFAS034 WL-Q2CFAS034

Tunable Optical Filters (*Thin Film DWDM Filter Based*)

Optoplex's **Tunable Optical Filter**, including **Tunable Bandpass Filter** and **Tunable Edge Filter**, is an integrated module, consisting of micro-optics and electronics. When receiving a stream of optical signals of a plurality of wavelengths from the Input-Port (IN), the 2-port Tunable Optical Filter directs a selected channel to the Output-Port (OUT). The selected channel can be varied (tuned) within the operating wavelength (frequency) range by a remote command sent through the built-in control PCB and firmware.

Optoplex's Tunable Optical Filter is based on a patented micro-optic design and thin-film filter coating technology. The *thin-film filter* used in the optical tunable filter is similar to those already widely used in DWDM devices. The wavelength tuning is achieved by varying the incident angle of the incoming light beam on the *thin-film filter*. Each single device is optimized to cover either C- or L-band wavelengths. The standard optical tunable filter product family supports 50-, 100-, and 200-GHz channel spacing.

Parameter	Unit	50 GHz	100 GHz
Wavelength Tuning Range	nm	C-band: 1528 ~ 1562,	, L-band: 1567 ~ 1603
Wavelength Tuning Resolution	THz	~ 10 pm or Calib	rated to ITU grids
Passband Width ¹ @ 0.5 dB	GHz	-	> 30
Passband Width ¹ @ 1.0 dB	GHz	> 16	-
Passband Width ¹ @ 3.0 dB	GHz	25 GHz (typical)	50 GHz (typical)
Passband Width ¹ @ 20 dB	GHz	< 85	-
Passband Width ¹ @ 25 dB	GHz	-	< 150
Peak Insertion Loss ¹ (without connector)	dB	< 4.5	< 3.0
Polarization Dependent Loss ¹	dB	<0.3 within CW±5GHz	< 0.4 within CW±10GHz
Polarization Mode Dispersion	ps	0.5	0.3
Chromatic Dispersion ¹	ps/nm	<±100 within CW ±5GHz	<±50 within CW ±12GHz
Wavelength Setting Error ²	GHz	<	±4
Wavelength Repeatability ²	GHz	±	-1
Wavelength Temperature Dependence	pm∕°C	< ± 1 (t	typical)
Return Loss	dB	>	40
Maximum Input Optical Power	mW	30	00
Tuning Speed (channel to channel)	sec	<	10
Tuning Power Consumption	mW	< 1800 (peak)); < 300 (idle)
Tuning Voltage	V	5 (I	DC)
Electronic Interface	mW	RS	232
Operating Temperature	°C	0 to	o 65
Storage Temperature	°C	-40 t	to 85
Dimension $(L \times W \times H)^3$	mm	84×6	51×16
otes:			

1. Over the stated spectral and operating temperature ranges and all polarization states.

2. Related to mechanical accuracy at a given temperature.

3. Including collimator sleeve and control PCB.

MPN	Product Description
TO-1C2CT801	50GHz, C-Band, SMF,
TO-1L2CT802	50GHz, L-Band, SMF,
TO-2C2CT803	100GHz, C-Band, SMF,
TO-2L2CT804	100GHz, L-Band, SMF,

For other operating wavelength ranges, such as S-, O-, E-band, and 1064nm, please contact Optoplex.

Tunable optical noise filtering

.

Noise suppression for optical amplifiers

Optoplex Corporation, 48500 Kato Road, Fremont, CA 94538, USA Tel: (510) 490-9930, Fax: (510) 490-9330, <u>sales@optoplex.com</u>, <u>www.optoplex.com</u>

Tunable Optical Filters (MEMS-Based)

compact module. For instance, the optical engine of the

The tunable filter is based on optical grating and MEMS

technology and the spectral shape is Gaussian-type. See

Spectral Profile at 1567nm

Wavelength (nm)

tunable filter module (including control electronics) is about

tunable filter is about 68x44x11mm. The full function

Optoplex's MEMS Tunable Optical Filter is based on a patented micro-optic design with MEMS tuning technology. It is an integrated module consisting of a MEMS chip, micro-optics and control electronics and interface. When receiving a stream of optical signals of a plurality of wavelengths from the Input-Port (IN), the 2-port tunable optical filter directs a selected channel to the Output-Port (OUT). Wavelength (frequency) tuning is achieved by changing driving voltage applied to the MEMS chip, via the control electronics and the built-in firmware.

The MEMS tunable filter offers high optical filtering performance: low insertion loss and high isolation. Moreover, the MEMS tunable filter provides high-speed tuning that is highly demanded in many applications. The standard optical tunable filter product family includes 30- and 60-GHz typical 3dB bandwidth.

Optoplex's MEMS tunable filter is ideal for applications from wavelength locking, optical channel monitoring and optical add/drop in optical communications; optical filtering and wavelength management in fiber sensing and spectroscopic instrumentation.

Compact Design The MEMS tunable filter is designed and assembled in a

100x68x11mm

Figure 2 above.

-5

-10 -15 -20 -25 -30

-35 -40

-45

IL(dB)

Gaussian Shape

Easy to Use

The MEMS tunable is controlled with driving voltage. For optical engine, typical analog driving voltage is from -60 to +60 VDC. In the tunable filter full function module, a voltage converter is built-in, and the driving voltage is from -5 to +5 VDC.

In manufacturing, the wavelength vs driving voltage is well calibrated (including the effect of operating temperature). With the calibration data, the user can easily tune the tunable filter to desired wavelength in an optical engine with analog interface. Or in a full function module, the user just needs to simply issue a command to tune the device to required wavelength.

Features

- Athermal design
- Fast tuning speed
- Compact size
- Wide tuning range, covering entire C-, L-, C+L, or O-band
- Low TDL and WDL
- Low & uniform insertion loss
- High channel isolation
- Low power consumption
- Telcordia GR-1221 qualified

Applications

- Wavelength selection in DWDM systems
- Optical performance monitoring
- Optical spectrum analyzer
- Tunable optical noise filtering
- Noise suppression for optical amplifiers

Parameter	Unit	C- or L-Band	C+L or O-Band
Wayslongth Tuning Dange		C-Band: L-Band:	1527 ~ 1567; 1570 ~ 1611
waverengtn running kange	nm	C+L Band: O-Band:	1521 ~ 1611; 1260 ~ 1360
Wavelength Tuning Resolution	рт	~ 10 pm or Calib	orated to ITU grids
Passband Width @ 1.0 dB	GHz	> 16	> 25
Passband Width @ 3.0 dB	GHz	30 (typical)	60
Passband Width @ 20 dB	GHz	<85	< 185
Peak Insertion Loss (w/o connector)	dB	< 4.0	< 4.0
Polarization Dependent Loss	dB	< 0.3	< 0.3
Chromatic Dispersion	ps/nm	± 5	± 5
Wavelength Setting Error	GHz	< ±4	< ±5
Wavelength Repeatability	GHz	1	1
Return Loss	dB	;	> 40
Maximum Input Optical Power	mW		10
Tuning Speed (channel to channel)	ms		< 20
Tuning Voltage	V	< 70	< 70
Operating Temperature	°C	-5	to 65
Storage Temperature	°C	- 40) to 85
Dimension (L \times W \times H) (Optical Engine)	mm	68×	44×11
Dimension (L \times W \times H) (Full Functional Module)	mm	100 ×	: 68 x 11

04

,			_	
Wavelength Band	Wavelength Range (nm)	3dB BW	Optical TF Engine, P/N	Full Function TF Module, P/N
C-Band	1527 ~ 1565	30GHz	TO-1C2NM300	TO -1C2FM500
L-Band	1570 ~ 1610	30GHz	TO -1L2NM310	TO -1L2FM510
C+L Band	1520 ~ 1610	60GHz	TO -2T2NM420	TO -2T2FM620
O-Band	1260 ~ 1360	60GHz	TO -2Q2NM430	TO -2Q2FM630

Mini Tunable Optical Filters

The Optoplex mini tunable filter described is specifically designed for 100G tunable transceiver analog coherent optics (CFP2-ACO) application. The main purpose of this tunable filter is to suppress the noise to improve the sensitivity and OSNR performance.

A VOA is integrated in the tunable filter to provide a max attenuation larger than 30dB. The integrated TF-VOA features a compact size, **5x5X7mm**, and the use of tight-bend ZBL fibers, is specifically suited for the communication STP transceiver package. A 2-dimensional MEMS is used here as the active tuning element so that the tuning time for both TF and VOA is as short as 50 msec.

Tunable Etalon Filter

Optical Channel Monitor (OCM) /Optical Performance Monitor (OPM)

Optoplex's **Optical Performance Monitor** (OPM), also known as **Optical Channel Monitor** (OCM), uses proprietary thin-film filter technology combined with a micro-actuator and intelligent firmware. OPM/OCM measures critical information on optical transmission signals in DWDM networks for monitoring signal dynamics, determining system functionality, identifying performance change, and providing feedback for network control elements to maintain and optimize network performance. In particular, Optoplex's OPM/OCM can automatically scan the C-band, L-band and C+L-band wavelength range and precisely measure channel wavelength, power, and optical signal-to-noise ratio (OSNR).

Parameter	Unit	50 GHz	100 GHz	
Wavelength Range	nm	C-, L- C+L, or O-Band		
Channel Number (for C- or L-band)	-	80 or 96	40 or 44	
Adjacent Channel Power Difference	dB	< 13	< 15	
Non-Adjacent Channel Power Difference	dB	< 20	< 25	
Minimum Spacing Between Channels	GHz	40	75	
Maximum Input Power	dBm		23	
Channel Input Power Range	dBm	- 40	~ - 10	
Absolute Channel Power Accuracy	dB		0.5	
Relative Channel Power Accuracy	dB	0.3		
Power Measurement Repeatability	dB	0.1		
PDL	dB	< 0.3		
Absolute Wavelength Accuracy	pm		50	
Relative Wavelength Accuracy	pm	30		
Channel Wavelength Resolution	pm	20		
OSNR	dB	> 25 > 28		
OSNR Accuracy	dB	1.5		
Noise Floor	dBm	-60		
Response Time	ms	< 200 (Wave < 500 Waveleng	(Power & elength) (Power, th & OSNR)	
Power Consumption	W	< 2		
Operating Temperature Range	°C	-5	~ 65	
Storage Temperature Range	°C	-40) ~ 85	

Features

- High dynamic range
- Low temperature sensitivity
- High power and wavelength accuracy
- Built-in wavelength reference
- Wide wavelength coverageCompact size
- 10, 40, and 100Gbps capable

Applications

- Optical performance monitoring of DWDM systems
- Optical add/drop monitoringOptical power or OSNR monitoring for
- gain equalization
- System alarms or error warningsPortable OSA/Spectrometer

Modulations	Data Rate (Gb/s)	Modulations	Data Rate (Gb/s)
ООК	2.5; 10	DP-DPSK	40
RZ-OOK	10	DP-DQPSK	100
ODB	2.5, 10	DP-BPSK	40
PSBT	2.5, 10	PM-BPSK	40
DPSK	10, 40	PM-QPSK	40, 100
RZ-DQPSK	40	DC PM-QPSK	100

Notes:

 For OPM's capability to monitor various signals of different modulations and data rates, please consult with Optoplex for details.
 Standard OPM with a dimension of 100x70x17.5mm and interface of UART or DPRAM

 Standard OPM with a dimension of 100x70x17.5mm and interface of UART or DPRAM available. Other custom footprint and interface available upon request.
 25GHz OPM for power monitoring available.

 Custom made Dual-Mode OPM (it works for different channel spacing, 100/50, or 50/25GHz) available upon request.

Optical Spectrum Analyzer (OSA) OEM Modules

Wavelength Band	Wavelength Range	Channel Spacing	MPN
C-Band	1528 ~ 1567	50	OM-1C2AM821
L-Band	1570 ~ 1610	50	OM-1L2AM822
C-Band	1528 ~ 1567	100	OM-2C2AM823
L-Band	1570 ~ 1610	100	OM-2L2AM824

1) Based on Thin Film DWDM Filter with Angle-Tuning.

2) The different from OPM is that OSA output spectral raw data,

rather than channel power and channel wavelength.

PM Part umbers	_

OI

Wavelength Band	Wavelength Range	Channel Spacing	MPN
C-Band	1528 ~ 1567	50	OM-1C2AM801
C-Band	1528 ~ 1567	50	OM-1C3AM802
L-band	1570 ~ 1610	50	OM-1L2AM803
L-band	1570 ~ 1610	50	OM-1L3AM804
C-Band	1528 ~ 1567	100	OM-2C2AM811
C-Band	1528 ~ 1567	100	OM-2C3AM812
L-band	1570 ~ 1610	100	OM-2L2AM813
L-band	1570 ~ 1610	100	OM-2L3AM814
O-Band-1	1260 ~ 1300nm	100	OM-2Q2AM815
O-Band-2	1310 ~ 1360nm	100	OM-2Q2AM816
E-Band-1	1360 ~ 1400nm	100	OM-2E2AM817
E-Band-2	1450 ~ 1490nm	100	OM-2E2AM818
S-Band	1490 ~ 1530nm	100	OM-2S2AM819

Optical Spectrum Analyzer Module (Based on MEMS-Grating)

Optoplex's near-infrared optical spectrum analyzer module (NIR OSA) is a high performance optical spectral engine for Process Analytical Technology (PAT) and Fiber Optic Test Equipment (FOTE) applications. Based on proprietary MEMS and micro-optic technologies, Optoplex's OSA module offers higher spectral resolution than those available in the market, which is demanding in today's increasing spectroscopy applications. Moreover, the MEMS tunable filter provides high-speed tuning that is highly demanded in many applications. Full range scanning is less than 1 sec for our standard C, L, C+L and O-band OSA and less than 2 sec for our full-band OSA.

Other features include: compact, light-weight, low power consumption and wide wavelength coverage. With a dimension of 100x70x10 mm, Optoplex's compact OSA modules are suitable for a variety of handheld, portable, bench-top and inline OSA/spectrometer applications.

						Features	Applications
		C-Band	C+L Band	O-Band	Full-Band	 Super spectral measurement 	 Optical spectral analyzing
Part Number		OM-1C2MM353	OM-2T2MM301	OM-202MM302	OM-2AFOE304	performance	 Analytical spectroscopic instrumentation
Spectral Measurement						 Extraordinary spectral resolution, and 	 Optical testing in optical
Wavelength Range	nm	1527 – 1567	1521 - 1611	1260 - 1360	1250 - 1650	 High wavelength accuracy 	communications
Resolution Bandwidth	nm	0.2	0.4	0.4	4	 High power sensitivity 	 Optical channel/performance monitoring (OPM)
Wavelength Accuracy	nm	0.05	0.05	0.05	0.5	 High power accuracy 	 Portable OSA in T&M and
Wavelength Repeatability ^{1,2)}	pm	± 10	± 10	± 10	± 100	 Compact size, light weight 	field test
Wavelength Readout	pm	1	1	1	10	 Fast scan speed 	 Biomedical optics, i.e., OCI imaging
Wavelength Linearity ¹⁾	nm	± 0.01	± 0.01	± 0.01	± 0.01	 Software upgradeable 	 Fiber sensing
Power Measurement						Cost-effective	 Portable OSA in defense /military applications
Dynamic Range ¹⁾	dB	+10 ~ -50	+10 ~ -50	+15 ~ -50	+10 ~ -50		, mindary appreciations
Power Accuracy ¹⁾	dB	± 0.5	± 0.5	± 0.5	± 1.0		
Power Repeatability ^{1,2)}	dB	± 0.1	± 0.1	± 0.1	± 0.1		
Power Readout Resolution	dB	± 0.01	± 0.01	± 0.01	± 0.01		
Power Linearity ¹⁾	dB	+ 0.1	+ 0.1	+ 0.1	+ 0.1		1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ontical Rejection Patio (OPP) ¹⁾	45	- 011	_ 0.1	- 0.1	_ 0.1		
@25GHz (0.2nm)				6			
@230172 (0.21111)		25		24			
@303H2 (0.4HHH)		23		24			
@75GHz (0.6nm)				45		*	
@100GHz (0.8nm)			25				
@200GHz (1.6nm)		40			25		
@400GHz (3.2nm)			40				
General Specifications							
Scanning Time	s	2~3	2~3	2~3	2~3		
Power Consumption	w		< 2	2.5			
Electronics Interface	-		UA	RT			
Fiber Length	т	1.0 ± 0.1				alian parlam parlam	
Optical Connector	-		FC/	APC		100	
Dimension	mm		112 x (68 x 11		twise training and the	
Operating Temperature Range	°C		0 ~	+65		2.00	
Storage Temperature Range	°C		-40 ^	~ +85		20	2 DA NO NO DO DO DO DO
OPM/OSA Demo Progr Delle Sectori Magnet PAR han Spatial Magnet PAR h	ram (V Read	6.34.1) a Nogati (on y solar Nolo par l specific closel () () () () () () () () () ()	na paosi na			O-Band OSA: 1265nm,	1310nm, and 1355nm
Control and Longer and Longe	CALLA LOSS Site Chief (State) (Contention (State) (Contention (State)) (Contention (State)) (An anima con a constant a con a constant constant a con Programmy (s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)			0-1260 1280 1300 Wavele 0-Band OS 0-Band OS 0-10 0-10 0-10 0-10 0-0-Band OS 0-10 0-10 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	1320 1340 1360 ngth (nm) A: 1265nm 3dB: 0.18nm 3dB: 0.31nm 20dB: 0.79nm
						1262 1263 1264 1 Wavele	1265 1266 1267 1268 ingth (nm)

Tunable Laser (iTLA)

The Optoplex TL-MC040TA101 tunable laser is a high performance continuous wave (CW) tunable laser source for various test and measurement applications the C-band wavelength range covering from 1528nm (196.25 THz) to 1568nm (191.25 THz). This tunable laser source is based on the OIF micro-iTLA standard. The laser and control electronics are pre-mounted on a dedicated circuit board for easy production installation. The tunable laser is

This tunable laser source is based on the OIF micro-iTLA standard. The laser and control electronics are pre-mounted on a dedicated circuit board for easy production installation. The tunable laser is featuring shuttered tuning, optical power control, off-grid tuning, adjustable grid spacing and narrow linewidth. A Labview software program and an RS232/USB cable are provided together with the tunable laser module. Users can plus and play with a computer (PC) to control the tunable laser very conveniently. The TL-MC040TA101 tunable laser designed on a fully monolithic InP chip without moving parts, it is a low voltage electronically tuned device enabling channel switching with straightforward control

The TL-MC040TA101 tunable laser designed on a fully monolithic InP chip without moving parts, it is a low voltage electronically tuned device enabling channel switching with straightforward control electronics. The integrated semiconductor optical amplifier (SOA) provisions the optical power control and also acts as a shutter to allow dark tuning when reverse biased. Laser tuning is implemented with thermal control. It can be tuned on grid or off-grid with a minimum tuning step of 0.1GHz. When operated in ON-Grid tuning, the tuning is shuttered. While in fine-tuning (+/-9GHz) mode, it is un-shuttered operation.

The TL-MC040TA101 tunable laser has a wavelength accuracy about 3.5pm max and a power stability of 0.02dB max (both measured in a period of 60 minutes).

With accurate wavelength and stable power output, the laser is ideal for many test and measurement applications, optical component and material characterization, and optical monitoring applications such as optical monitoring in optical thin film coating.

loromotor	Unit		Specification		Noto
arameter	Unit	Min	Тур.	Max	Note
Vavelength Range	nm	1528		1567	C-Band
Output Power	dBm	8		17	
Power Stability ¹	dB			±0.5	
Power Repeatability ²	dB			±0.5	
- Funing Speed	sec	3		10	
MSR (side mode suppression ratio)	dB	40			±2.5nm range, with 0.06nm RBW
ine width	kHz			400	
RIN (10MHz-1GHZ)	dB (Un			-140	
RIN (1-10GHz)	ab/Hz			-145	
DSNR	dB	55			0.1nm BW
PER	dB	20			
Back Reflection Tolerance	dB			27	
Shuttered Output Power	dBm			-35	
Power Supply Voltage	v	4.5		5	
Power Consumption	w			6	
Cold Start Settle Time	s			10	
Warm Start Settle Time	s			0.1	
Transient Settle Time	μs		150	250	
Dimensions (L x W x H)	mm	1	100 X 120 X 2	22	
Connector Type	-	FC	/APC Stand	a rd	
	<u> </u>				·
stures: ull C-Band tunable laser source larrow line-width, <= 400kHz ligh output power +15.5dBm no /ariable output power range, 8.0 liectronic shutter for dark tuning Sridless operation Vavelength stabilized for 0.1GHz Jn-shuttered frequency fine tuni tapability ±9GHz arge SMSR, >40dB ow RIM	ominal bdB g ng	 Low Low Cas Sim RS2 Rof- Telo Low test Cus con 	y phase noise y power diss e operating ple RS232 ir 32/USB com IS compliant cordia GR 46 /-cost altern : and measu tom-softwai ponent cha	e ipation, 4.5 temperatu iterface version cab : 6/6 8 Qualified ative soluti rement re available racterizatio	W re range -5ºC to +75ºC le available (optional) on in manufacturing lin for material and on purpose upon reque

Ordering Information

MPN	TL-MC040TA101	TL-NC040TA105	TL-uC040TA110
Photo			
Description	iTLA Tunable Laser Module (Full- Function with digital control interface), C-Band, 15dBm	iTLA, C-Band, 50GHz, 13dBm, Dithering	u-iTLA, MSA, C-Band, 13dBm

10G Tunable ROSA

With increasing demand for data and video from home, business and wireless, higher and higher bandwidth for the Optical Access Network is required.

FSAN (Full Service Access Network) initiated a working group to work on NG-PON2 in 2010 in collaboration with ITU-T. TWDM (TDM/WDM: Time Division Multiplexing/Wavelength Division Multiplexing) was selected as the preferred technology for NG-PON2. The first recommendation of NG-PON2 general requirements was published by ITU-T (G.989.1) in late 2012, and the physical layer requirements (ITU G.989.2) was approved in December 2014.

Optoplex started to work closely with major GPON equipment suppliers (the leading companies in FSAN) to develop colorless ONU for NG-PON2 since the very beginning when FSAN initiated the working group. With proprietary technology, Optoplex developed a periodic tuning filter – cost effective and small form factor for easy integration with APD/TIA, suitable for NG-PON2 application, and then a 10Gbps Tunable ROSA (10G APD/TIA integrated with a tunable filter). This 10G tunable ROSA has been successfully verified by many major companies in past three years and then deployed in field by a couple of T-1 service providers recently. The tunable ROSA used in NG-PON2 is illustrated in Figure 1.

Ordering Information

Product:	Tunable 10G ROSA
Product Description:	10G Tunable ROSA, APD/TIA, L-band, 100GHz Channel Spacing, 400GHz Tuning Range
Part Number:	RX-2L2RT704

High-Speed High-Power Photodetector

These high speed photodiode, PD-200, is hermetically sealed, high reliability, low harmonic distortion photodiode modules designed for high optical power applications with minimum bandwidths of 20 GHz. The device is well suited for receiver applications with optical pre-amplification, and is available either with or without an internal 50Ω termination. The photodiode module is available in either a V-connector package or a miniature surface mount package with CPW (coplanar waveguide) RF output.

Features: **Applications:** Parameter Min Typical Max Units High Current Handling (up to 20 Optically Amplified Systems ٠ mĂ) Responsivity (1480 nm~1620nm) 0.5 0.65 A/W RZ, NRZ, Super FEC Formats to 20 Lowest PDL (typical 0.05 dB) ٠ Gb/s Useable spectral wavelength range Logic Sense / Coupling Positive Non-Inverting / DC 50 Ω High Dynamic Range, Analog RF Links of 800-1650 nm over Fiber Low Group Delay 3 dB Bandwidth 18 22 GHz Rapid Doppler-Shift LIDAR Low Harmonic Distortion Measurements V-connector (SMA) or surface Rise Time/ Fall Time/ FWHM 14, 16, 22 -ps Coherent Lightwave Systems mount package options Ideal Front-End O/E Converter for Bellcore GR-468 Qualified Dark Current @ 25C, 5V 10 100 nA Test Instruments One device for multiple wavelengths reduces operational & Electrical Return Loss --10 dB _ inventory costs Optical Return Loss 27 30 dB Bias Voltage 2.8 3.3 3.8 v PDL @ 1550 nm -0.3 0.5 dB @3.1 **Relative DC Responsivity**

Contact Information

Optoplex Corporation 48500 Kato Road Fremont, California 94538 USA

Tel: (510) 490-9930 Fax: (510) 490-9330

sales@optoplex.com

www.optoplex.com